

भारत सरकार :: अंतरिक्ष विभाग

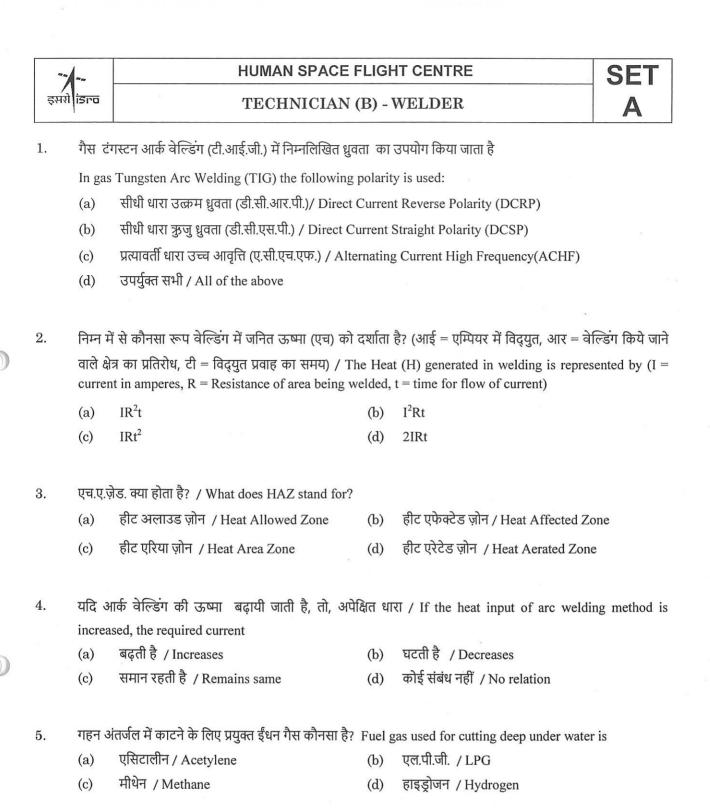
GOVERNMENT OF INDIA: DEPARTMENT OF SPACE

समानव अंतरिक्ष उड़ान केंद्र /HUMAN SPACE FLIGHT CENTRE

परीक्षा पुस्तिका / Test Booklet				
परीक्षा दिनांक / Date of Written Test	15.03.2020 (Sunday)			
विषय / Trade	वेल्डर / Welder			
परीक्षा अवधि / Duration of Written Test	15.00 Hrs to 16.30 Hrs (90 Minutes)			
प्रश्नों की संख्या / No. of questions	60			
उत्तर पुस्तिका में पृष्ठों की संख्या (कवर पेज सहित) No. of pages in the booklet (including cover page)	16			

परीक्षार्थियो के लिए अनुदेश / Instructions to the candidates

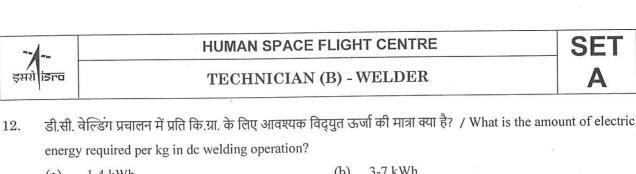
- यह प्रश्न-पत्र, परीक्षा-पुस्तिका के रूप में है। सभी परीक्षार्थियों का मूल्यांकन समरूपी प्रश्नों पर होगा।
 The question paper is in the form of test booklet. All candidates will be assessed on identical questions.
- 2. ओ.एम.आर. शीट पर हिदायतों को ध्यानपूर्वक पढ़िए। ओ.एम.आर. शीट पर लिखने/रंगने/बब्बल करने और अपने उत्तरों को चिह्नित करने के लिए केवल बॉल पान्इट पेन (काला या नीला) का उपयोग कीजिए।
 - Read the instructions on the **OMR** sheet carefully. Use only Ball Point Pen (Black or Blue) for writing / shading / bubble on **OMR** sheet and marking your answers.
- 3. उत्तरों के लिए, सभी प्रत्याशियों को कार्बन इम्प्रेशन का एक अलग ओ.एम.आर. उत्तर शीट दिया जाएगा। परीक्षा के अंत में ओ.एम.आर. शीट को ऊपर के परफोरेशन चिह्न पर काट दीजिए और मूल ओ.एम.आर. उत्तर शीट निरीक्षक को सौंप दीजिए और इसकी नकली प्रति अपने पास रखिए।
 - A separate **OMR** answer sheet with carbon impression is provided to all the candidates for answering. On completion of the test tear the **OMR** Answer sheet along the perforation mark at the top and handover the original OMR answer sheet to the invigilator and retain this duplicate copy with you.
- 4. प्रत्येक वस्तुनिष्ठ प्रश्न के लिए विषय और/या जहाँ भी आवश्यक हो, चित्र के साथ बहु उत्तर विकल्प (a), (b), (c) और (d) दिए जाएंगे। उनमें से केवल एक ही सही होगा।


Each objective question is provided with a text and/or figures wherever applicable with multiple answer choices (a), (b), (c) and (d). Only one of them is correct.

शेष अनुदेशों के लिए इस बुकलेट का अंतिम पृष्ठ देखें/

TE-04 Please see

Please see the last page of this booklet for rest of the instructions



(c) 2t + 2.5 mm (d) 12t + 2.5 mm

- 1	HUMAN SPACE FLIGHT CENTRE					
इसरो	isro	TECHNICIAN (B) - WELDER				
7.	प्रतिरोध (a) (c)	वेल्डिंग में दो इलेक्ट्रोड किससे बने होते हैं? / In एलुमिनियम / Aluminium कांस्य / Bronze	resistanc (b) (d)	e welding, two electrodes are mad लोहा / Iron ताम्र / Copper	e of	
8.	निम्निल Which (a) (c)	खित में से वेल्डिंग आर्क द्वारा उत्सर्जित कौनस n of the following non-ionising radiations पराबैंगनी (यू.वी.) / Ultraviolet (UV) दृशीय / Visible	ा गैर-आयन emitted b (b) (d)	नकारी विकिरण आर्क-नेत्र का संभावित y welding arc is likely to cause ard अवरक्त / Infra-red उपर्युक्त में से कोई नहीं / None of tl	, , , , , , , , , , , , , , , , , , , ,	
9.	ओम र (a) (b) (c) (d)	का सिद्धांत बताता है कि / Ohms law states th धारा वोल्टेज के साथ विपरीत अनुपात में होती है धारा वोल्टेज के साथ समानुपाती होती है / Cur धारा (वोल्टेज) ² के साथ विपरीत अनुपात में होत धारा (वोल्टेज) ² के साथ समानुपाती होती है / C	हें / Currei rent is di नी है / Cur	rectly proportional to voltage rent is inversely proportional to (v		
10.		वेल्डिंग में आर्क की लंबाई लगभग निम्न वे roximately equal to शलाका के व्यास का दुगुना होती है / Twice शलाका के व्यास का 1.5 गुना होती है / 1.5 t शलाका के व्यास के बराबर होती है / Diama शलाका के व्यास का आधा होती है / Half th	the diamo	eter of the rod diameter of the rod e rod	e length shall be	
11.	आव (a) (b) (c)	penetration, wasted electrodes अत्यधिक अवकीर्ण, कोरों का अधःकर्तन, cutting along edges, irregular deposit	इलेक्ट्रोडों व अनियमित s. wasted	ही बरबादी / Excessive piling up o निक्षेप, इलेक्ट्रोडों की बरबादी / Exces electrodes	ssive spatter, und	

(d)

उपर्युक्त सभी / All of the above

12.	डी.सी.	वेल्डिंग प्रचालन में प्रति कि.ग्रा. के लिए आवश्यक विद	स्युत ऊप	र्जा की मात्रा क्या है? / What is the amount of electric
	energy	required per kg in dc welding operation?		
	(a)	1-4 kWh	(b)	3-7 kWh
	(c)	4-9 kWh	(d)	6-10 kWh
13.	ए.सी. वे	ोल्डिंग ट्रांसफार्मर की क्षमता क्या है? / What is the	efficie	ncy of an AC welding transformer?
	(a)	0.9	(b)	0.8
	(c)	0.7	(d)	0.6
14.	कार्बन	आर्क वेल्डिंग के ऋणात्मक टर्मिनल पर तापमान	क्या होत	है? / What is the temperature at the negative
	termi	nal of carbon arc welding?		
	(a)	3300°C	(b)	3200°C
	(c)	3100°C	(d)	3000°C
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		The Country of the Co
15.			उपसाधः	न क्या है? / The safety accessory to protect the front
		of the welder is	(L)	गॉगल्स / Googles
	(a)	एप्रन / Apron	(b)	हैण्ड ग्लोव्स / Hand Gloves
	(c)	हेल्मेट / Helmet	(d)	608 (close) Haild Gloves
16.	थर्मिट	वेल्डिंग के दौरान गठित धातुमल क्या है? / The slag	forme	d during Thermit welding process is:
	(a)	FeO	(b)	Al
	(c)	Fe ₂ O ₃	(d)	Al_2O_3
	(0)	10203	(4)	12-5
17.	यदि t	$an\theta = 5/12$ है. तो $\sin\theta$ (θ is न्यून कोण) का मान	क्या है	/ If $tan\theta = 5/12$, then $sin\theta$ is given by (θ is acute
	angle			
	(a)	5/13	(b)	5/12
	(c)	12/13	(d)	12/5
	10.000			

TE-04

5

March 2020

HUMAN SPACE FLIGHT CENTRE TECHNICIAN (B) - WELDER A 18. प्रतिरोध वेल्डिंग में वोल्टेज को सामान्यतः कितना रखा जाता है? / The voltage in resistance welding is generally kept between (a) 28-36 वोल्ट / volts (b) 28-20 वोल्ट / volts (c) 12-20 वोल्ट / volts

प्रतिरोध वेल्डिंग के संबंध में निम्नलिखित में से कौनसा विवरण सही है (हैं) / Which of the following statement(s) is/are 19. true for resistance welding? विद्युत प्रवाह का समय बहुत महत्वपूर्ण होता है / The time for which current flows is very important (i) विद्युत को बंद करने के बाद, वेल्ड ठंडा होने तक दाब को बनाये रखा जाता है / After switching off the current, (ii) the pressure is maintained until the weld cools शीतलन के लिए जल को खोखले इलेक्ट्रोडों में बहाया जाता है / Water is circulated through hollow electrodes (iii) for cooling (i) & (iii) (i) & (ii) (a) (i), (ii) & (iii) (ii) & (iii) (c)

20. एक्स-रे द्वारा उत्पादित फिल्म को क्या कहते हैं? / The film produced by X-ray is called as
(a) एक्सोग्राफ / Exograph (b) रेडियोग्राफ / Radiograph

(c) गामाग्राफ / Gammagraph (d) फोटोग्राफ / Photograph

21. $\sqrt{8} + \sqrt{32}$ का मान क्या है? / The value of $\sqrt{8} + \sqrt{32}$

(a) $6\sqrt{2}$

(c) $2\sqrt{8}$ (d) $\sqrt{64}$

22. 0.81 का वर्गमूल क्या है? / The square route of 0.81 is?

(a) 0.19 (b) 0.09

(c) 9.0 (d) 0.9

1)

 $2\sqrt{6}$

SET

TECHNICIAN (B) - WELDER

23. एक माँ और बेटी की कुल आयु 50 है। यदि माँ की आयु बेटी की आयु से 2 गुना अधिक +5 है तो माँ की आयु का पता लगाइये/ Sum of the ages of a mother and daughter is 50. If mother's age is 5 more than two times daughter's age, find mother's age.

(a) 15

(b) 35

(c) 5

(d) 50

24. उत्क्रम ध्रुवता वेल्डिंग के संबंध निम्नलिखित में से कौनसा विवरण सही है? / Which of the following is true for reverse polarity welding ?

(a) कार्य धनात्मक होता है और इलेक्ट्रोड होल्डर का भूसंपर्क होता है / Work is positive and electrode holder is earthed

(b) इलेक्ट्रोड होल्डर धनात्मक होता है और कार्य का भूसंपर्क होता है / Electrode holder is positive and work is earthed

(c) इलेक्ट्रोड होल्डर धनात्मक होता है और कार्य ऋणात्मक होता है / Electrode holder is positive and work negative

(d) इलेक्ट्रोड होल्डर ऋणात्मक होता है और कार्य धनात्मक होता है / Electrode holder is negative and work is positive

25. निम्न में से किसके लिए फोर्ज वेल्डिंग उपयुक्त होता है? / Forge welding is suited for which of the following?

(a) ताड्य लोहा / Wrought iron

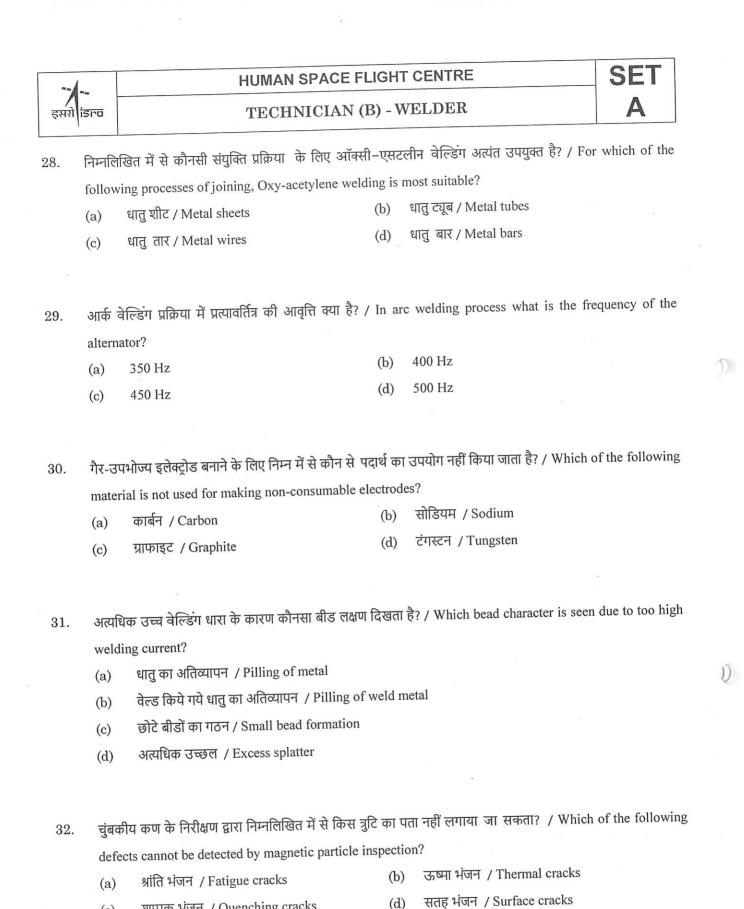
(b) ढलवाँ लोहा / Cast iron

(c) स्टेनलेस स्टील / Stainless steel

(d) उच्च कार्बन स्टील / High carbon steel

26. प्रक्षेप वेल्डिंग के बारे में निम्नलिखित में से कौनसा विवरण सही है? / Which of the following statements is true about Projection welding?

- (a) यह एक बहु-स्पॉट वेल्डिंग प्रक्रिया है / It is a multi-spot welding process
- (b) यह एक निरंतर स्पॉट वेल्डिंग प्रक्रिया है / It is a continuous spot welding process
- (c) इसे कैंटीलीवर बनाने के लिए उपयोग किया जाता है / It is used to make cantilevers
- (d) इसे मेश बनाने के लिए उपयोग किया जाता है / It is used to form mesh


27. निम्नलिखित में से कौनसा गुण वेल्ड धातु भंजन का कारण होता है? / Which of the following property is responsible for weld metal cracking?

(a) तापमान स्थिति / Temperature conditions

(b) दाब स्थिति / Pressure conditions

(c) विकृति / Strain

(d) प्रतिबल / Stress

शामक भंजन / Quenching cracks

(d)

(c)

SET A

TECHNICIAN (B) - WELDER

33.	थर्मिट प्रतिक्रिया में उत्पादित तापमान का परिमाण क्या है? / What is the magnitude of temperature produced in
	Thermit reaction?

(a) 2000°C

(b) 2500°C

(c) 3000°C

(d) 3500°C

34. निम्नलिखित में से स्व-नियामक वेल्डिंग आर्क वाली वेल्डिंग प्रक्रिया कौनसी है? / Which of the following welding process has self-regulating welding arc?

(a) पी.ए.डब्ल्यू. / PAW

(b) जी.टी.ए.डब्ल्यू. / GTAW

(c) जी.एम.ए.डब्ल्यू. / GMAW

(d) एस.एम.ए.डब्ल्यू. / SMAW

35. पराश्रव्य वेल्डिंग में कितनी अधिकतम मोटाई का वेल्ड किया जा सकता है? / What is the maximum thickness that can be welded in ultrasonic welding?

(a) 1.8 mm

(b) 2.0 mm

(c) 2.2 mm

(d) 2.5 mm

36. ऑक्सिजन कतरन प्रक्रिया में प्रयुक्त कर्तक टॉर्च में कितने छिद्र उपलब्ध होते हैं? / What are the number of openings available in the cutting torch used in oxygen cutting process?

(a) 5

(b) 6

(c) 7

(d) 8

37. निम्नलिखित में से कौनसी त्रुटि रंजक वेधक जाँच द्वारा पता नहीं लगाई जा सकती है? / Which of the following defect is not detected by dye penetrant test?

- (a) भंजन / Cracks
- (b) फोर्जन त्रुटियाँ / Forging defects
- (c) क्षरण / Leaks
- (d) गैर धात्विक अंतर्वेशन / Non-metallic inclusions

SET

TECHNICIAN (B) - WELDER

A

- 38. रेलवे के रेलों को वेल्ड करने के लिए सामान्यत: कौनसी वेल्डिंग प्रक्रिया का उपयोग किया जाता है? / Which is the welding process commonly used to weld railway rails?
 - (a) विस्फोटी वेल्डिंग / Explosive welding
- (b) परिताडन वेल्डिंग / Percussion welding
- (c) पराश्रव्य वेल्डिंग / Ultrasonic welding
- (d) धर्मिट वेल्डिंग / Thermit welding
- 39. वेल्डिंग दुकान में किस प्रकार के अग्नि शामक का उपयोग किया जाता है? / Which type of fire extinguisher is used in welding shop?
 - (a) CO2 अग्नि शामक / CO2 extinguisher
 - (b) हेलन अग्नि शामक / Halon extinguisher
 - (c) फोम प्रकार का अग्नि शामक / Foam type extinguisher
 - (d) शुष्क पाऊडर अग्नि शामक / Dry powder extinguisher
- 40. ऑक्सिजन व एसिटीलीन के लिए होज़ का सही रंग क्या होता है? / What are the correct colour of hoses for oxygen and acetylene?
 - (a) ऑक्सिजन के लिए लाल और एसिटीलीन के लिए नीला / Red for oxygen and blue for acetylene
 - (b) ऑक्सिजन के लिए काला और एसिटीलीन के लिए लाल / Black for oxygen and red for acetylene
 - (c) ऑक्सिजन के लिए काला और एसिटीलीन के लिए मरून / Black for oxygen and maroon for acetylene
 - (d) ऑक्सिजन के लिए लाल और एसिटीलीन के लिए मरून / Red for oxygen and maroon for acetylene
- - (a) सीसा / Lead

- (b) कम कार्बन / Low carbon
- (c) कम गंधक / Low sulphur
- (d) कम हाइड्रोजन / Low hydrogen
- 42. निम्नलिखित में से कौनसा विकासक का प्रकार नहीं है? / Which of the following is not a type of developer?
 - (a) तेल विलेय विकासक / Oil soluble developer
 - (b) जल विलेय विकासक / Water soluble developer
 - (c) जल निलंबन विकासक / Water suspendable developer
 - (d) शुष्क पाऊडर / Dry powder

SET

TECHNICIAN (B) - WELDER

- 43. वेल्डिंग के लिए निम्नलिखित में से कौनसा डिज़ाइन अनुशंसित किया जाता है? / Which one of the following is a design recommendation for welding?
 - (a) परिष्कृत उपचार की आवश्यकता वाले वेल्डों का पता लगाएँ / Locate welds where special finishing operations are required
 - (b) वेल्ड किये गये समुच्चय में अधिक भाग होना चाहिए / Welded assemblies should have more parts
 - (c) वेल्डिंग के दौरान इलेक्ट्रोड होल्डर को ऊर्ध्वाधर में अंकित करते समस्तरीय वेल्डन करना चाहिए / Welding should be done horizontally with the electrode holder pointing upward during welding
 - (d) वेल्ड फिलेट के वर्धन को न्यूनतम रखना चाहिए / The build-up of weld fillets should be kept to a minimum
- 44. अपसेट बट वेल्डिंग में निम्न में से कौनसे प्रकार का प्रतिरोध पाया जाता है? / Which kind of resistance is experienced in upset butt welding?
 - (a) चुंबकीय प्रतिरोध / Magnetic resistance
- (b) विद्युत प्रतिरोध / Electric resistance
- (c) वायु प्रतिरोध / Air resistance
- (d) ऊष्मा प्रतिरोध / Thermal resistance
- 45. इलेक्ट्रॉन बीम वेल्डिंग प्रक्रिया के संबंध में निम्नलिखित में से कौनसा विवरण सही नहीं है? / Which of the following is not true about Electron Beam Welding process?
 - (a) ई.बी.डब्ल्यू उपकरण की लागत तुलनात्मक रूप से अत्यधिक है / The cost of EBW equipment is comparatively higher
 - (b) ई.बी.डब्ल्यू का उपयोग करते हुए उच्च रूप से अभिक्रियाशील सामग्रियों को वेल्ड किया जा सकता है / Highly reactive metals can be welded using EBW
 - (c) ई.बी.डब्ल्यू. के लिए फिलर तार की आवश्यकता होती है / EBW essentially requires a filler wire
 - (d) ई.बी.डब्ल्यू. के लिए निर्वात की आवश्यकता होती है / EBW requires vacuum
- 46. हाइड्रोजन भंगुरता का मतलब क्या है? / Hydrogen embrittlement is:
 - (a) वेल्डिंग के लिए ऊष्मा जनित करने हेतु हाइड्रोजन व ऑक्सिजन का उपयोग करने वाली गैस वेल्डिंग प्रक्रिया / A gas welding process using hydrogen and oxygen to generate heat for welding
 - (b) धातु में हाइड्रोजन के प्रेरण और तत्पश्चात् विसरण के कारण धातु का भंगुर होकर विभंग हो सकने की प्रक्रिया / A process by which metal becomes brittle and fracture prone due to the induction and subsequent diffusion of hydrogen into the metal
 - (c) घटकों के सतह को परिघर्षण प्रतिरोध गुण प्रदान करने के लिए एक कठोर लेपन संक्रिया / A hard facing operation to provide wear resistance properties to the surface of components
 - (d) वेल्डमेंट की दृढ़ता और रूक्षता को बढ़ाने के लिए हाइड्रोजेनेटेड वातावरण में आयोजित एक ऊष्मा उपचार प्रक्रिया / A heat treatment process carried out in a hydrogenated atmosphere to increase the strength and toughness of the weldments

na/		HUMAN SPACE F	LIGH	Γ CENTRE	SET
इसरो	isra	TECHNICIAN (Α		
47.		ग लोहा का दर जो सामन्यत: इलेक्ट्रॉनिक कार्यों में प्र			ng of soldering
	iron w	hich is normally used for electronics works i	s in the		
	(a)	750 – 1000 Watts	(b)	500 – 750 Watts	
	(c)	250 – 500 Watts	(d)	50 – 100 Watts	
48.		और कांस्य के वेल्डिंग के लिए कौनसी ज्वाला उपयुक	त है? / \	Which flame is suitable for welding	g of brasses and
	bronz				
	(a)	ऑक्सीकारक ज्वाला / Oxidising flame			
	(b)	उदासीन ज्वाला / Neutral flame			
	(c)	कार्बुरण ज्वाला / Carburising flame			
	(d)	उपर्युक्त में से कोई नहीं / None of the above			
49.	भंजन	में कब तक भेदक कारी सिक्तन कर सकते हैं? / Fo	or how	long is a penetrant allowed soak in	cracks?
	(a)	20 से to 40 मिनट तक minutes	(b)	15 से to 35 मिनट तक minutes	
	(c)	10 से to 30 मिनट तक minutes	(d)	5 से to 15 मिनट तक minutes	
50.		वी व युग्म-यू बट वेल्ड का उपयोग निम्नलिखित मोट welds are used for plates of following thickn		प्लेटों के लिए किया जाता है / Double-	V and double-U
	(a)	1 – 5 mm	(b)	5 – 10 mm	
	(c)	10 – 15 mm	(d)	Above 15 mm	
			-	g 10	0
51.	-	की वेल्डिंग के लिए उदासीन ज्वाला उपयु	क्त है /]	Neutral flame is suitable for weldir	ng of

(d)

टंगस्टन एलॉय Tungsten alloy

ताम्र एलॉय Copper alloy

(a)

(c)

सिलिकॉन एलॉय / Silicon alloy

निकल एलॉय Nickel alloy

SET

TECHNICIAN (B) - WELDER

A

- 52. लेज़र का विस्तृत रूप क्या है? / LASER is an acronym for
 - (a) लाइट ऑगमेंटेशन बाई सस्टेण्ड एमिशन ऑफ रेडियेशन / Light Augmentation by Sustained Emission of Radiation
 - (b) लाइट एम्प्लिफिकेशन बाई सस्टेण्ड एमिशन ऑफ रेडियेशन / Light Amplification by Sustained Emission of Radiation
 - (c) लाइट ऑगमेंटेशन बाई सिमुलेटेड एम्प्लिफिकेशन ऑफ रेडियेशन / Light Augmentation by Simulated Amplification of Radiation
 - (d) लाइट एम्प्लिफिकेशन बाई की स्टिमुलेटेड एमिशन ऑफ रेडियेशन / Light Amplification by Stimulated Emission of Radiation
- 53. गैस बेल्डिंग के संबंध में निम्नलिखित में से कौनसा विवरण सही नहीं है? / Which of the following is not true for gas welding?
 - (a) यह आर्क वेल्डन से धीमा है / It is slower than arc welding
 - (b) इसमें गैसों को रखने और संभालने में सुरक्षा की समस्याएँ हैं / There are safety problems in storing and handling the gases
 - (c) आर्क वेल्डन की तुलना में ऊष्मा प्रभावित क्षेत्र और विरूपण कम है / Heat affected zone and distortion are less as compared to arc welding
 - (d) यह पतली शीटों के लिए उपयुक्त है / It is suitable for thin sheets
- 54. इलेक्ट्रॉन बीम वेल्डिंग के दौरान सन्निकट पॉवर सघनता का क्रम क्या होता है? / The approximate power density during an electron beam welding is of the order of
 - (a) 10^8 to 10^9 W/cm²

(b) 10^7 to 10^8 W/cm²

(c) 10^6 to 10^7 W/cm²

- (d) 10^5 to 10^6 W/cm²
- 55. आर्क बेल्डिंग में, संतोषप्रद वेल्ड के लिए कौनसे तीन प्राचलों का नियंत्रण करना होता है? / In arc welding, which three major parameters have to be controlled for satisfactory welding operation?
 - (a) धारा, वोल्टेज एवं यात्रा की गति / Current, voltage and speed of travel
 - (b) धारा, आर्क की लंबाई एवं यात्रा की गति / Current, arc length and speed of travel
 - (c) धारा, वोल्टेज एवं आर्क की लंबाई / Current, voltage and arc length
 - (d) बोल्टेज, आर्क की लंबाई एवं यात्रा की गति / Voltage, arc length and speed of travel

TECHNICIAN (B) - WELDER

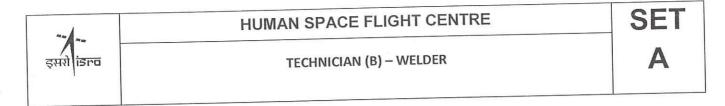
56.	आर्क स्थिरता ———	के साथ	बेहतर होती है	/ Arc st	ability is	better wi	ith
-----	------------------	--------	---------------	----------	------------	-----------	-----

- (a) डी.सी. वेल्डिंग / DC welding
- (b) ए.सी. वेल्डिंग / AC welding
- (c) ए.सी. व डी.सी. दोनों वेल्डिंग / Both AC and DC welding
- (d) दिष्टकृत आपूर्ति / Rectified supply
- 57. पिघली धातु को किससे सुरक्षित रखने के लिए शील्डिंग गैसों का उपयोग किया जाता है? / Shielding gases are used to protect molten metal from
 - (a) अत्यधिक शीत होने और वेधी न होने से / Being too cold and not penetrating
 - (b) अति ऊष्मित होने और बहुत जल्द शीतलन होने से / Being overheated and cooling too fast
 - (c) सरंध्रता एवं भंगुरता से / Porosity and brittleness
 - (d) ऊष्मा और विरूपण से / Heat and distortion
- 58. थर्मल वेल्डिंग में ऊष्माक्षेपी रसायनिक अभिक्रिया के दौरान तापमान का क्रम क्या होता है? / During exothermal chemical reaction in Thermal welding, the temperature is the order of
 - (a) 3500°C

(b) 2700°C

(c) 2000°C

- (d) 1700°C
- 59. फेरस धातु, Cu और Al एलॉय के वेल्डिंग के लिए कौनसी ज्वाला उपयुक्त होती है? / Which flame is suitable for welding of ferrous metals, Cu and Al alloys?
 - (a) उदासीन ज्वाला / Neutral flame
- (b) ऑक्सीडाइसिंग ज्वाला / Oxidising flame
- (c) कार्बुरन ज्वाला / Carburising flame
- (d) उपर्युक्त में से कोई नहीं / None of the above
- 60. एस.एम.ए.डब्ल्यू. में 300ए धारा के साथ वेल्डिंग के लिए इलेक्ट्रोड का आकार क्या होता है? / What is the electrode size for welding with 300A current in SMAW?
 - (a) 1/8"


(b) 1/4"

(c) 5/32"

(d) 7/32"

/	HUMAN SPACE FLIGHT CENTRE	SET
इसरो ंडन्व	TECHNICIAN (B) - WELDER	A

SPACE FOR ROUGH WORK

5. सभी वस्तुनिष्ठ प्रकार के प्रश्नों के समान अंक होंगे। सही उत्तर के लिए तीन अंक, उत्तर न देने पर शून्य और गलत उत्तर के लिए एक अंक काटा जाएगा। किसी प्रश्न के लिए एक से अधिक उत्तर देना गलत उत्तर माना जाएगा।

All objective type questions carry equal marks of **THREE** for a correct answer, **ZERO** for no answer and **MINUS ONE** for wrong answer. **Multiple answers** for a question will be regarded as a wrong answer.

- 6. प्रश्न पुस्तिका की दाहिनी ओर ऊपर के किनारे पर <u>A</u> या <u>B</u> या <u>C</u> या <u>D</u> चिह्नित किया गया है, जिसे **ओ.एम.आर.** शीट पर, बॉक्स में लिखना तथा बबल करना अनिवार्य है। ऐसा न करने पर, उत्तर-पुस्तिका का मूल्यांकन नहीं किया जाएगा।
 - Question booklets have been marked with $\underline{\mathbf{A}}$ or $\underline{\mathbf{B}}$ or $\underline{\mathbf{C}}$ or $\underline{\mathbf{D}}$ on the right hand top corner, which is mandatory to be written on the **OMR** sheet in the box and bubble appropriately, failing which, the answer sheet will not be evaluated.
- पुस्तिका में उपलब्ध जगह को आवश्यकता के अनुसार कच्चे काम के लिए उपयोग किया जा सकता है। अलग से शीट नहीं दी जाएगी।
 Space available in the booklet could be used for rough work, if required. No separate sheet will be provided.
- उपस्थिति शीट पर हस्ताक्षर करने से पहले, परीक्षार्थी को उपस्थिति शीट पर पुस्तिका कोड लिखना होगा। परीक्षार्थी को अपने नाम के सामने ही हस्ताक्षर करने होंगे।
 - Before signing the attendance sheet, the candidate should write the Booklet Code in the attendance sheet. Candidates should sign against THEIR names only.
- 9. परीक्षा के अंत में (1) फोटो चिपकाए लिखित परीक्षा के कॉल लेटर (2) मूल ओ.एम.आर. उत्तर शीट निरीक्षक को वापस कर दें तथा किसी भी परिस्थिति में अभ्यर्थी इसे न ले जाएं।
 - At the end of the test (1) Written test Call Letters(s) with photograph pasted on it (2) Original OMR Answer Sheet shall be returned to the Invigilator and shall not be carried by the candidate under any circumstances.